

DDA6307/CSC6052/MDS6002: Natural Language Processing 自然语言处理

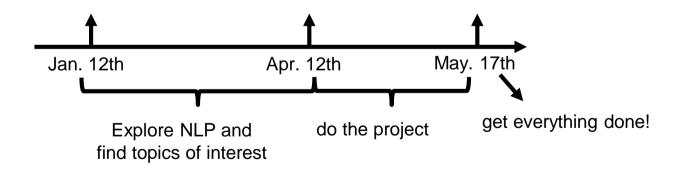
Lecture 12: Tips for the Final Project

Spring 2024
Benyou Wang
School of Data Science

Final project

Timeline:

- **Poster Presentation:** May. 17th.
 - Prepare and present a poster showcasing your project's idea and progress to peers.
- **Final Project Deadline:** May. 17th (final date).
 - Submit a detailed final report elucidating the work done on the project.



TA supervision

Timeline:

April 26th: 14:00 pm to 16:30 pm (all TAs attending, we could make any possible adjustment for TA supervison)

May 6th:

- 9:00 10:30: TA Xidong WANG Group (Daoyuan 501)
- 10:30 12:00: TA Juhao LIANG Group (Daoyuan 501)
- 13:30 15:00: TA Fei YU Group (Daoyuan 501)
- 15:00 16:30: TA Junying CHEN Group (Daoyuan 501)

May 10th:

- 9:00 9:40: TA Xidong WANG Group (Daoyuan 501)
- 9:40 10:20: TA Juhao LIANG Group
- 10:20 11:00: TA Fei YU Group
- 11:00 11:40: TA Junying CHEN Group
- 13:30 16:20: Instructor Time (location: TB202)

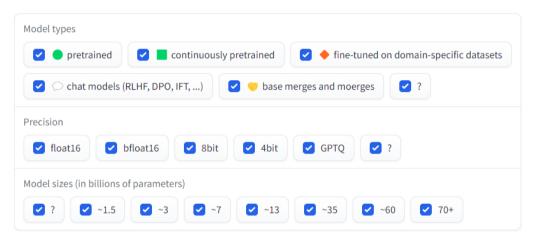
Practice

- Backbone model selection
- Dataset
- Model inference
 - \circ vLLM
 - o 百度千帆
- Model training
 - Pretraining (not suggested)
 - Supervised finetuning
 - Reinforced Learing fron Human Feedback (e.g., DPO)
 - RAG (Langchain or LLamaindex)
 - Agent (React)
- UI (Gradio)

Models Selection

Refer to LeaderBoard and Gihub Repo

Open LLM Leaderboard Filter LLMs here



Awesome-Foundation-Models

```
    Awesome-Diffusion-Models
    Awesome-Video-Diffusion-Models
    Awesome-Diffusion-Model-Based-Image-Editing-Method
    Awesome-CV-Foundational-Models
    Awesome-Healthcare-Foundation-Models
    Awesome-Healthcare-Foundation-Models
    Star
    awesome-large-multimodal-agents
    Computer Vision in the Wild (CVinW)
```

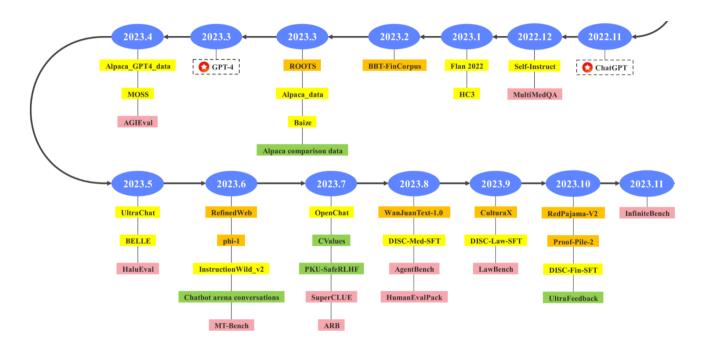
- Precision of LLMs: The level of detail that a LLM uses when it processes numbers. Lower precision uses fewer bits, resulting in faster but less detailed computations.
- Where to Find LeaderBoard: <u>Huggingface Space</u> and <u>PaperWithCode</u>
- Also refer to Github repo with Owesome

Awesome Tiny Models

- ❖ LLaMA 3
- LLaMA 3 8B (not that small) https://huggingface.co/meta-llama/Meta-Llama-3-8B
- Owen
 - Qwen1.5-0.5B: https://huggingface.co/Qwen/Qwen1.5-0.5B
 - Qwen-1_8B: https://huggingface.co/Qwen/Qwen-1_8B
 - > Owen1 5-1 8B: https://huggingface.co/Owen/Owen1 5-
- ➤ Qwen1.5-1.8B: https://huggingface.co/Qwen/Qwen1.5-1.8B
 - MiniCPM
 - MiniCPM-2B-128k: https://huggingface.co/openbmb/MiniCPM-2B-128k
- ♦ Phi
 Phi-3-mini-128k-instruct: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
 - phi-2: https://huggingface.co/microsoft/phi-2
- Gemmagemma-2b: https://huggingface.co/google/gemma-2b
 - > gemma-1.1-2b-it: https://huggingface.co/google/gemma-1.1-2b-it
 - geriina-1.1-2b-ii. https://huggingrace.co/googie/geriina-1.1-2b-ii
- ❖ Medical
 - Apollo-0.5B: https://huggingface.co/FreedomIntelligence/Apollo-0.5B
 Apollo-1.8B: https://huggingface.co/FreedomIntelligence/Apollo-1.8B
 - ➤ Apollo-1.8B: https://huggingface.co/FreedomIntelligence/Apollo-1.8B
 ❖ Multimodal model:
 - ➤ ALLaVA-3B: https://huggingface.co/FreedomIntelligence/ALLaVA-3B
 - MiniCPM-V-2: https://huggingface.co/openbmb/MiniCPM-V-2

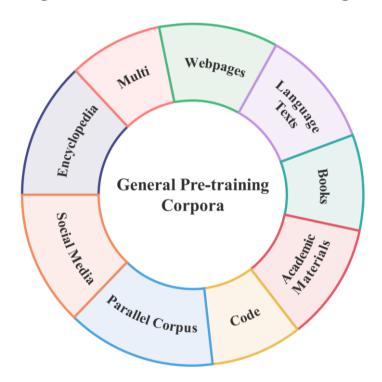
Datasets

Datasets in ChatGPT Era



A timeline of some representative LLM datasets. **Orange** represents pre-training corpora, **yellow** represents instruction fine-tuning datasets, **green** represents preference datasets, and **pink** represents evaluation datasets.

Data categories of Pre-training Corpora



Pre-training corpora can generally be categorized into these eight types.

1. Webpages

Common Crawl 2007-X

Publisher: Common Crawl

o Size: -

License: Common Crawl Terms of Use

Source: Web crawler data

RedPajama-V2 2023-10

Publisher: Together Computer

Size: 30.4 T Tokens

License: Common Crawl Terms of Use

Source: Common Crawl, C4, etc.

C4 2019-10

Publisher: Google Research

o Size: 12.68 TB

License: Common Crawl Terms of Use

Source: Common Crawl

WanJuan-CC 2024-2

 Publisher: Shanghai Artifcial Intelligence Laboratory

Size: 1 T Tokens

o License: CC-BY-4.0

Source: Common Crawl

- 1. https://github.com/togethercomputer/RedPajama-Data
- 2. https://commoncrawl.org/
- 3. https://huggingface.co/datasets/allenai/c4
- 4. https://opendatalab.org.cn/OpenDataLab/WanJuanCC

2. Books

the_pile_books3

Publisher: EleutherAl

• Size: 100.9 Gib

License: MiT

Source: Toronto Book Corpus

Anna's Archive

Publisher: Anna

Size: 586.3 TB

o License: -

Source: Sci-Hub, Library Genesis, etc.

3. Encyclopedia

Baidu baike

Publisher: Baidu

Size: -

License: Baidu baike User Agreement

Source: Encyclopedic content data

Wikipedia

Publisher: Wikimedia Foundation

o Size: -

License: CC-BY-SA-3.0 & GFDL

Source: Encyclopedic content data

- 1. https://huggingface.co/datasets/the-pile-books3
- 2. https://annas-archive.org/datasets
- 3. https://baike.baidu.com/
- 4. https://huggingface.co/datasets/wikipedia

4. Academic Materials

arXiv

Publisher: Paul Ginsparg et al.

∘ Size: -

License: Terms of Use for arXiv APIs

Source: arXiv preprint

PubMed Central

Publisher: NCBI

○ Size: -

License: PMC Copyright Notice

Source: Biomedical scientific literature

Category: Academic Materials

5. Code

Github

Publisher: Microsoft

o Size: -

o License: -

Source: Various code projects

BIGQUERY

Publisher: Salesforce Research

o Size: 341.1 GB

License: Apache-2.0

Source: BigQuery

- 1. https://arxiv.org/
- 2. https://www.ncbi.nlm.nih.gov/pmc/
- 3. https://github.com/
- 4. https://github.com/salesforce/CodeGen

6. Language Texts

News-crawl

o Publisher: UKRI et al.

• Size: 110 GB

o License: CC0

Source: Newspapers

7. Parallel Corpus

WikiMatrix

Publisher: Facebook Al et al.

Size: 134 M parallel sentences

License: CC-BY-SA

Source: Wikipedia

8. Language Texts

OpenWebText

Publisher: Brown University

o Size: 38 GB

License: CC0

Source: Reddit

^{1. &}lt;a href="https://data.statmt.org/news-crawl/">https://data.statmt.org/news-crawl/

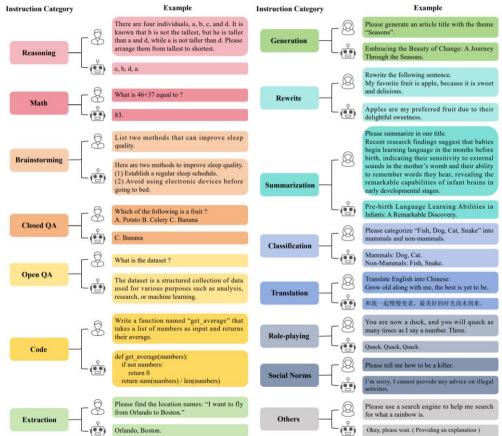
^{2. &}lt;a href="https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix">https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix

^{3.} https://skylion007.github.io/OpenWebTextCorpus/

Instruction Fine-tuning Datasets

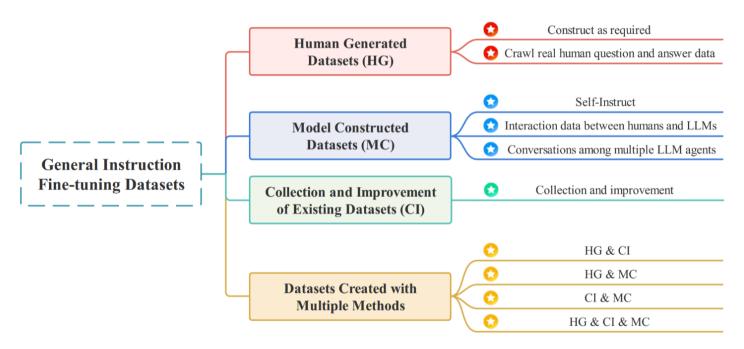
Fine-tuning datasets for Al models include text pairs of "instruction inputs" and "answer outputs." The **instruction inputs** are diverse requests like classification, summarization, and paraphrasing made by humans. The **answer outputs** are the model-generated responses that meet human expectations.

Summary of Instruction Categories



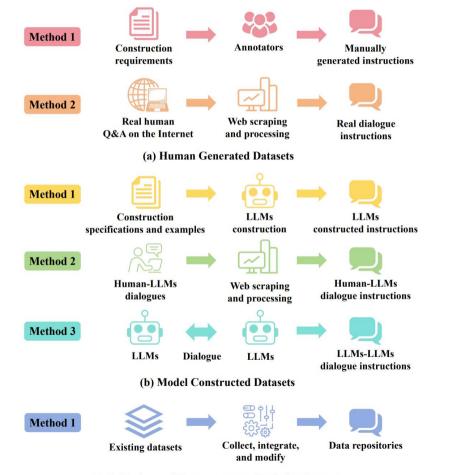
Considering the current classification status and focusing only on single-turn dialogue instructions, instructions are broadly grouped into these classes.

Instruction Fine-tuning Datasets



Construction methods corresponding to general instruction fine-tuning datasets

Instruction Fine-tuning Datasets



General Instruction Fine-tuning Datasets

Alpaca_GPT4

Publisher: Microsoft Research

Size: 52K instancesLicense: Apache-2.0

 Source: Generated by GPT-4 with Aplaca data prompts (Low construction cost)

Wizard_evol_instruct_70K

Publisher: Microsoft et al.

Size: 70K instances

License: -

 Source: Evolve instructions through the Evol-Instruct method (High quality)

Phoenix-sft-data

Publisher: CUHKSZ
 Size: 46K instances
 License: CC-BY-4.0

 Source: Multi-lingual instructions, posttranslated multi-lingual instructions (Multilingual)

ShareGPT90K

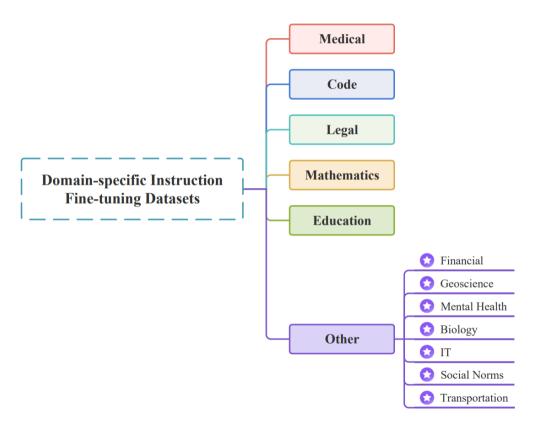
Publisher: RyokoAl

Size: 90K instances

License: CC0

Source: ShareGPT (multi-round dialogue)

^{3. &}lt;a href="https://github.com/FreedomIntelligence/LLMZoo">https://github.com/FreedomIntelligence/LLMZoo 4. https://huggingface.co/datasets/RyokoAl/ShareGPT52K



Domain categories of the domain-specific instruction fine-tuning datasets

1. Medical

Huatuo-26M

Publisher: CUHKSZ

Size: 26504088 instances

License: Apache-2.0

 Source: Collection and improvement of various datasets.

HuatuoGPT

Publisher: CUHKSZ

Size: 226042 instances

License: Apache-2.0

 Source: Real conversations between doctors and patients
 & Generated by ChatGPT

HuatuoGPT-II

Publisher: CUHKSZ

Size: 5394K instances

License: Apache-2.0

 Source: Construct medical instructions from medical corpus.

The HuatuoGPT series has garnered significant attention, accumulating over 1,000 stars, more than 500,000 uses, and over 65 citations.

^{1. &}lt;a href="https://github.com/FreedomIntelligence/Huatuo-26M">https://github.com/FreedomIntelligence/Huatuo-26M 2. https://github.com/FreedomIntelligence/HuatuoGPT

^{3. &}lt;a href="https://github.com/FreedomIntelligence/HuatuoGPT-II">https://github.com/FreedomIntelligence/HuatuoGPT-II

2. Code

Code_Alpaca_20K

Publisher: Sahil Chaudhary

Size: 20K instancesLicense: Apache-2.0

Source: Generated by Text-Davinci-003

CodeContest

Publisher: DeepMindSize: 13610 instancesLicense: Apache-2.0

 Source: Collection and improvement of various datasets

3. Legal

DISC-Law-SFT

Publisher: Fudan University et al.

Size: 403K instances

License: Apache-2.0

 Source: Open source datasets & Legalrelated Text Content

HanFei

Publisher: CAS & CUHKSZ

Size: 255K instancesLicense: Apache 2.0

License: Apache-2.0

 Source: Filter legal-related data according to rules

^{1.} https://github.com/sahil280114/codealpaca 2. https://github.com/siat-nlp/HanFei

^{3. &}lt;a href="https://github.com/FudanDISC/DISC-LawLLM">https://github.com/FudanDISC/DISC-LawLLM 4. https://github.com/FudanDISC/DISC-LawLLM 4. https://github.com/salesforce/CodeGen

4. Math

OpenMathInstruct

o Publisher: NVIDIA

Size: 1.8M instances

License: NVIDIA License

 Source: GSM8K and MATH datasets (original questions);

OVM

Publisher: CUHKSZ

O Size: 13610 instances

License: Apache-2.0

 Source: The reasoning instruction of GSM8K and game24

5. Education

Child_chat_data

o Publisher: CUHKSZ

Size: 12000 instances

o License: -

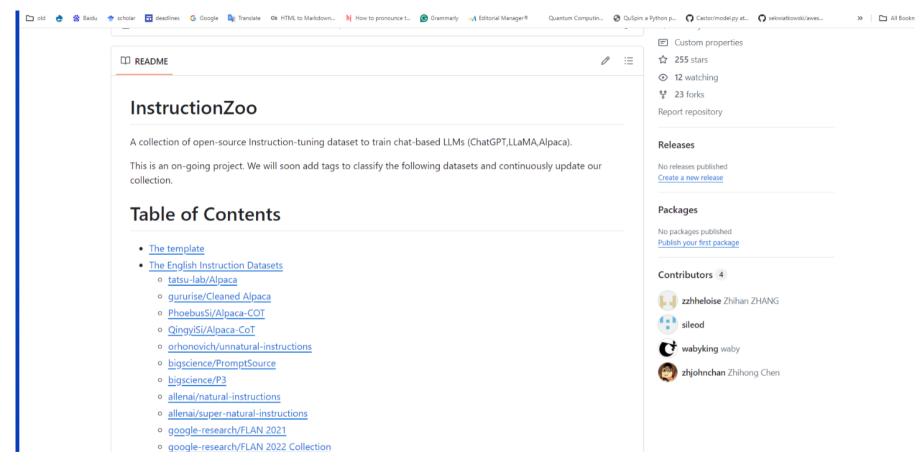
Source: storybooks and science books

Child_chat_data

- Publisher: Harbin Institute of Technology et al.
- Size: 5000 instances
- License: -
- Source: Real conversations & Generated by GPT-3.5-Turbo

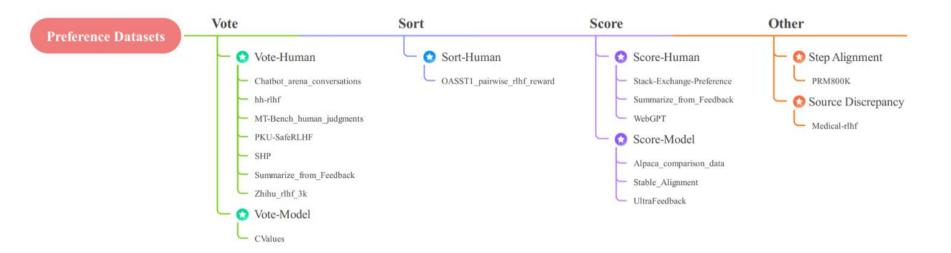
^{1. &}lt;a href="https://github.com/sahil280114/codealpaca">https://github.com/sahil280114/codealpaca 2. https://huggingface.co/datasets/FreedomIntelligence/OVM-dataset

^{3. &}lt;a href="https://github.com/HIT-SCIR-SC/QiaoBan">https://github.com/HIT-SCIR-SC/QiaoBan 4. https://github.com/FreedomIntelligence/RichGPT

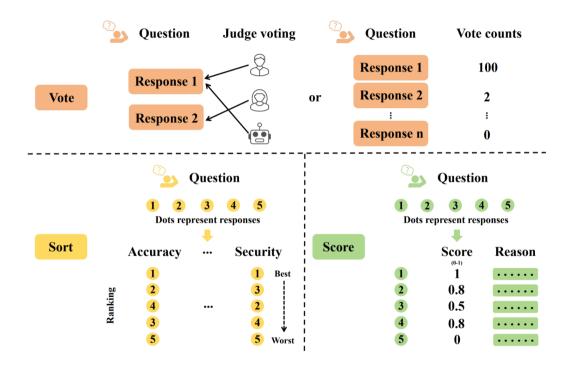


https://github.com/FreedomIntelligence/InstructionZoo

Preference datasets are compilations of instructional prompts that include evaluations of various responses to the same input. These datasets generally feature paired instructions, each accompanied by distinct responses, and are supplemented with feedback from either humans or alternative models.



Different preference datasets corresponding to various preference evaluation methods



Different preference evaluation methods

Chatbot_arena_conversations

Publisher: UC Berkeley et al.

Size: 33000 instances

o License: CC-BY-4.0 & CC-BY-NC-4.0

Preference: Vote

 Source: Generated by twenty LLMs & Manual judgment

Stack-Exchange-Preferences

Publisher: Anthropic

Size: 10807695 instancesLicense: CC-BY-SA-4.0

• Preference: Score

Source: Stackexchange data & Manual

scoring

OASST1_pairwise_rlhf_reward

Publisher: TasksourceSize: 18918 instances

License: Apache-2.0

Preference: Sort

Source: OASST1 datasets & Manual

sorting

^{1.} https://browse.arxiv.org/pdf/2306.05685.pdf 2.https://huggingface.co/datasets/tasksource/oasst1 pairwise rlhf reward

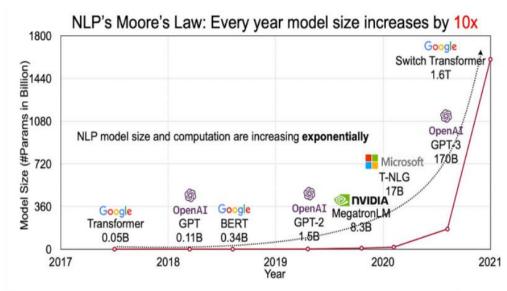
^{3.} https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences

vLLM - Background

Large language models (LLMs) are getting larger and larger, and the GPU memory overhead for training and deployment is also increasing!

Models (float32)	Inference Memory Estimation	
Llama-3-8B	32 GB	
Llama-3-70B	280 GB	

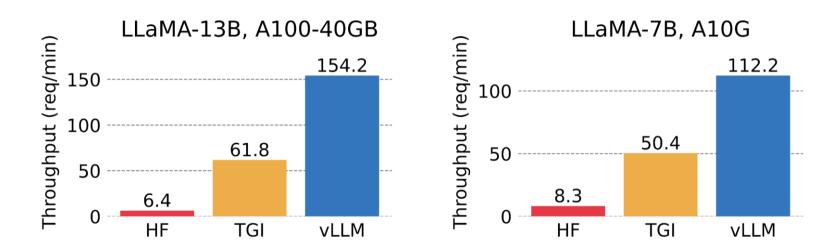
Memory



	NVIDIA RTX 3060	NVIDIA RTX 3090	NVIDIA Tesla V100	NVIDIA A100 80 GB (PCIe)
Bandwidth	360 GB/s	936.2 GB/s	897 GB/s	2039 GB/s
Memory Bus	192 bit	384 bit	4096 bit	5120 bit
Memory Size	12 GB	24 GB	32 GB	80 GB
Memory Type	GDDR6	GDDR6X	HBM2	HBM2e

vLLM

A high-throughput and memory-efficient inference and serving engine for LLMs

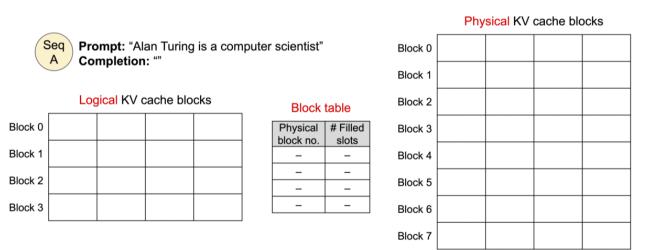


Serving throughput when each request asks for one output completion. vLLM achieves 14x - 24x higher throughput than HF and 2.2x - 2.5x higher throughput than TGI.

vLLM

PagedAttention, an attention algorithm inspired by the classic idea of virtual memory and paging in operating systems.

0. Before generation.



Example generation process for a request with *PagedAttention*.

https://blog.vllm.ai/2023/06/20/vllm.html

Get started with vLLM

Install vLLM with the following command (check out our installation guide for more):

```
$ pip install vllm
```

vLLM can be used for both offline inference and online serving. To use vLLM for offline inference, you can import vLLM and use the LLM class in your Python scripts:

```
from vllm import LLM

prompts = ["Hello, my name is", "The capital of France is"] # Sample prompts.
llm = LLM(model="lmsys/vicuna-7b-v1.3") # Create an LLM.
outputs = llm.generate(prompts) # Generate texts from the prompts.
```

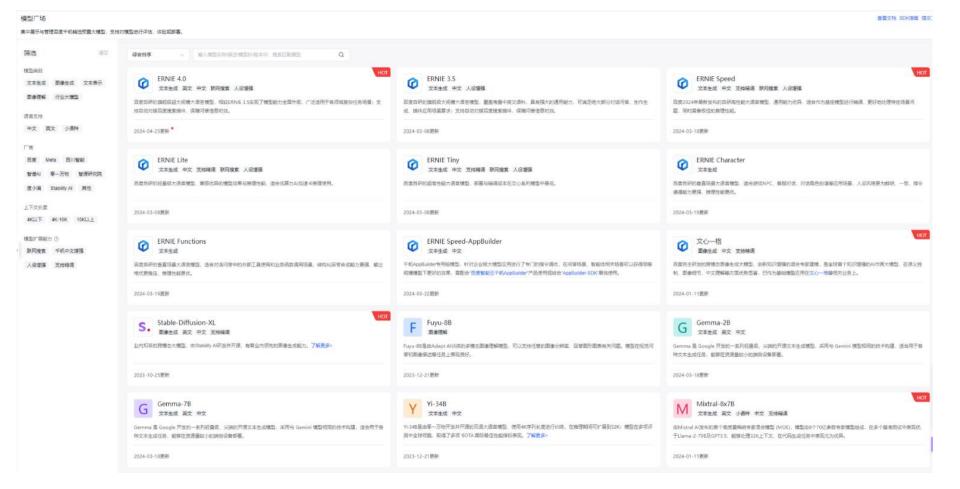
To use vLLM for online serving, you can start an OpenAl API-compatible server via:

```
$ python -m vllm.entrypoints.openai.api_server --model lmsys/vicuna-7b-v1.3
```

You can guery the server with the same format as OpenAl API:

```
$ curl http://localhost:8000/v1/completions \
   -H "Content-Type: application/json" \
   -d '{
        "model": "lmsys/vicuna-7b-v1.3",
        "prompt": "San Francisco is a",
        "max_tokens": 7,
        "temperature": 0
}'
```

https://docs.vllm.ai/en/latest/getting_started/quickstart.html



Efficient Model Fine-tuning

PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.

High performance on consumer hardware

Consider the memory requirements for training the following models on the <u>dataset</u> with an A100 80GB GPU with more than 64GB of CPU RAM.

Model	Full Finetuning	PEFT-LoRA PyTorch	PEFT-LoRA DeepSpeed with CPU Offloading
bigscience/T0_3B (3B params)	47.14GB GPU / 2.96GB CPU	14.4GB GPU / 2.96GB CPU	9.8GB GPU / 17.8GB CPU
bigscience/mt0-xxl (12B params)	ООМ GPU	56GB GPU / 3GB CPU	22GB GPU / 52GB CPU
bigscience/bloomz-7b1 (7B params)	ООМ GPU	32GB GPU / 3.8GB CPU	18.1GB GPU / 35GB CPU

With *LoRA* you can fully finetune a 12B parameter model that would've otherwise run out of memory on the 80GB GPU, and comfortably fit and train a 3B parameter model. When you look at the 3B parameter model's performance, it is comparable to a fully finetuned model at a fraction of the GPU memory.

Submission Name	Accuracy
Human baseline (crowdsourced)	0.897
Flan-T5	0.892
lora-t0-3b	0.863

https://github.com/huggingface/peft

PEFT: Quantization

Quantization is another method for reducing the memory requirements of a model by representing the data in a lower precision. It can be combined with PEFT methods to make it even easier to train and load LLMs for inference.

```
Load Pre-trained model and tokenizer
First let's load the model we are going to use - phoenix-inst-chat-7b! Note that the model itself is around 7B in full precision
    import torch
    from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
    # Quantization type (fp4 or nf4). According to QLoRA paper, for training 4-bit base models (e.g. using LoRA adapters) one should use
    bnb 4bit quant type = "nf4"
    # Activate nested quantization for 4-bit base models (double quantization)
    use nested quant = True
    model_id = "FreedomIntelligence/phoenix-inst-chat-7b"
    bnb config = BitsAndBytesConfig(
        load in 4bit=True,
        bnb_4bit_use_double_quant=use_nested_quant,
        bnb_4bit_quant_type=bnb_4bit_quant_type,
        bnb 4bit compute dtype=torch.bfloat16
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
```

assignment 3 example

PEFT: Quickstart

Install PEFT from pip:

```
pip install peft
```

Prepare a model for training with a PEFT method such as LoRA by wrapping the base model and PEFT configuration with get_peft_model. For the bigscience/mt0-large model, you're only training 0.19% of the parameters!

```
from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
model_name_or_path = "bigscience/mt0-large"
tokenizer_name_or_path = "bigscience/mt0-large"

peft_config = LoraConfig(
    task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.
)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"
```

DPO Direct Preference Optimization

Direct Preference Optimization (DPO) is a RLHF algorithm, which modifies the online training algorithm PPO into **offline training** via a new parameterization of the reward model

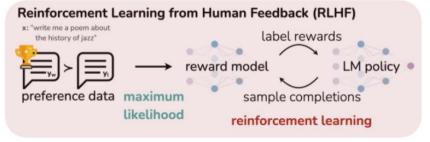
You can see the detailed derivation process in the paper "<u>Direct Preference Optimization:</u> Your Language Model is Secretly a Reward Model"

In DPO, a LLM is directly optimized on the preference data, without the need of reward model training

Direct Preference Optimization (DPO)

maximum

likelihood



Preference data: (question, chosen, rejected), i.e. one question and two corresponding responses with indicating which one is preferred

• Example of preference data

Question	Chosen	Rejected
Human: What are pros and cons of electrical cars?	Assistant: Pro-electrical cars: 1) They charge using renewable energy 2) They are environmentally friendly, and require less energy than gasoline cars 3) They can use renewable energy sources like wind, and solar 4) They are quieter 5) They are more efficient 6) They are less polluting Conelectrical cars: 1) They have a limited range (if they need charging) 2) They are expensive, because they require batteries 3) They are a bit heavier than gasoline cars, due to the batteries	Assistant: The pros are they reduce pollution, and some also feel they're more fun to drive than gas-powered cars. The cons are that the batteries require electricity, which is a limited resource, and the cars are more expensive.

Popular open-source preference dataset:

hh (helpfulness and harmlessness)

released by Anthropic, the most classical one

huggingface: Anthropic/hh-rlhf

UltraFeedback

released by THU, the latest large-scale preference dataset, very popular

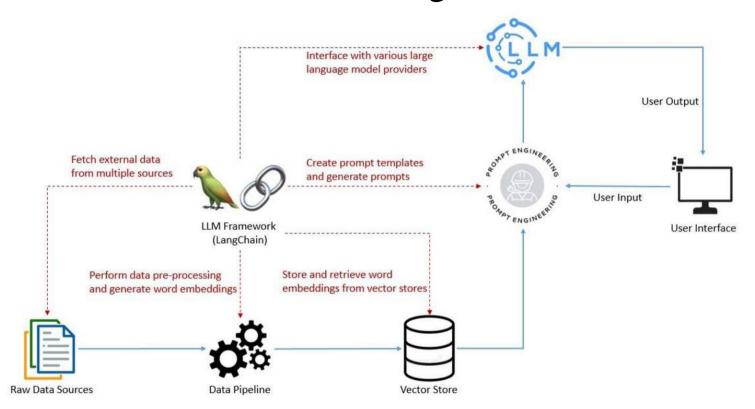
huggingface: openbmb/UltraFeedback

Implementation: based on DPOTrainer in trl, see <u>code example</u>

```
from trl import DPOTrainer
trainer = DPOTrainer(
    model.
    model ref,
    tokenizer=tokenizer.
    train_dataset=train_dataset,
    eval dataset=eval dataset,
    beta=args.beta,
    loss_type=args.loss_type,
    args=training_args,
    max length=args.max length,
    max_prompt_length=args.max_prompt_length,
    max_target_length=args.max_target_length,
    generate_during_eval=args.generate_during_eval,
    disable dropout=model args.disable dropout,
trainer.train()
trainer.save_model(training_args.output_dir)
```

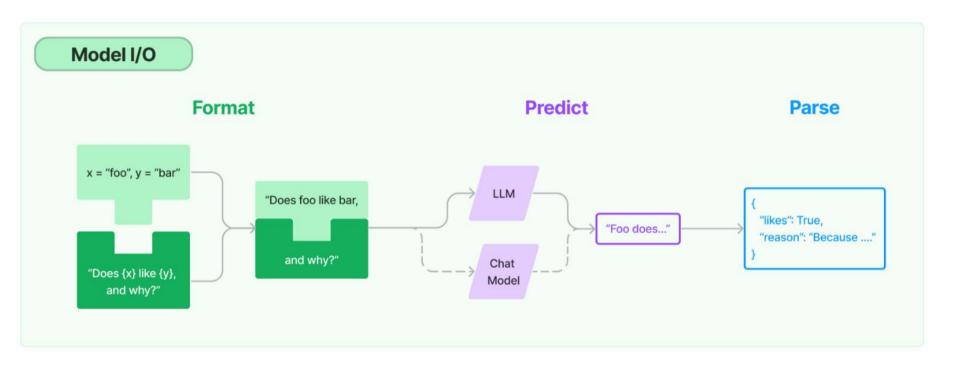
Langchain

What Is LangChain?



- ☐ An Framework Combining LLMs with external data.
- ☐ Multiple components to be called in a specific sequence.
 - ☐ This is what's referred to as a chain in LangChain.

Building Blocks of LangChain — Models I/O



- ☐ Templatize prompts
- Dynamically select and manage model inputs.
- Extract information from model outputs

Building Blocks of LangChain — Models I/O

```
response = llm.invoke("List the seven wonders of the world.")

print(response)

1. Great Pyramid of Giza (Egypt)
2. Hanging Gardens of Babylon (Iraq)
3. Statue of Zeus at Olympia (Greece)
4. Temple of Artemis at Ephesus (Turkey)
5. Mausoleum at Halicarnassus (Turkey)
6. Colossus of Rhodes (Greece)
7. Lighthouse of Alexandria (Egypt)
```

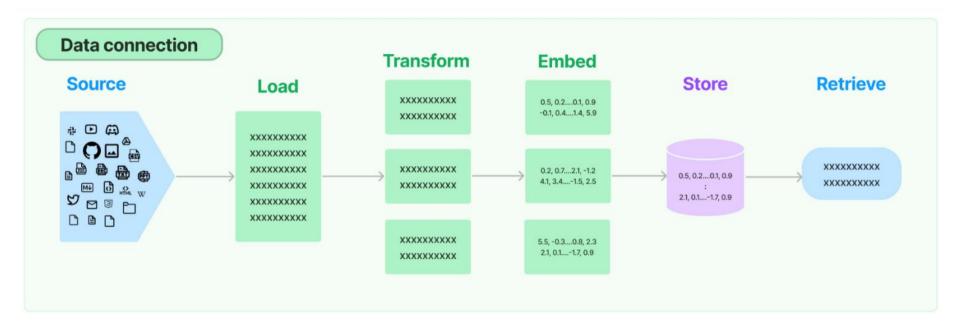
```
from langchain.schema.messages import HumanMessage, SystemMessage
messages = [
    SystemMessage(content="You are Micheal Jordan."),
    HumanMessage(content="Which shoe manufacturer are you associated with?"),
]
response = chat.invoke(messages)
print(response.content)
from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI()
```

☐ LLMs accept **strings** as inputs, or objects which can be coerced to string prompts

Building Blocks of LangChain — Models I/O

```
from langchain.output_parsers.json import SimpleJsonOutputParser
# Create a JSON prompt
ison prompt = PromptTemplate.from template(
    "Return a JSON object with `birthdate` and `birthplace` key that answers the following question: {question}"
# Initialize the JSON parser
json_parser = SimpleJsonOutputParser()
# Create a chain with the prompt, model, and parser
json_chain = json_prompt | model | json_parser
# Stream through the results
result list = list(json chain.stream({"question": "When and where was Elon Musk born?"}))
# The result is a list of JSON-like dictionaries
print(result list)
[{'birthdate': 'June 28, 1971', 'birthplace': 'Pretoria, South Africa'}]
```

□ Langchain's **SimpleJsonOutputParser** is used when you want to parse JSON-like outputs.



- Retrieve relevant external data and pass it to the language model
- Grounding the models on relevant and accurate information
- Documents are converted into their embeddings and stored in vector databases.

```
from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader("bcg-2022-annual-sustainability-report-apr-2023.pdf")

pdfpages = loader.load_and_split()

Document Loaders
```

```
from langchain.text splitter import RecursiveCharacterTextSplitter
state of the union = "Your long text here..."
text splitter = RecursiveCharacterTextSplitter(
    chunk size=100,
    chunk overlap=20,
    length function=len,
    add start index=True,
texts = text splitter.create documents([state of the union])
print(texts[0])
print(texts[1])
```

- □ Document Transformers
- ☐ RecursiveCharacterTextSplitter, a
 versatile text splitter that uses a
 character list for splitting. It allows
 parameters like chunk size,
 overlap, and starting index.

```
from langchain.embeddings import OpenAIEmbeddings

# Initialize the model
embeddings_model = OpenAIEmbeddings()

# Embed a list of texts
embeddings = embeddings_model.embed_documents(
    ["Hi there!", "Oh, hello!", "What's your name?", "My friends call me World",'
)
print("Number of documents embedded:", len(embeddings))
print("Dimension of each embedding:", len(embeddings[0]))
```

☐ Text Embedding Models

<u>embed_documents</u> method is used to embed multiple texts, providing a list of vector representations.

```
from langchain.embeddings import OpenAIEmbeddings

# Initialize the model
embeddings_model = OpenAIEmbeddings()

# Embed a single query
embedded_query = embeddings_model.embed_query("What was the name mentioned in the
print("First five dimensions of the embedded query:", embedded_query[:5])
```

☐ Text Embedding Models

<u>embed query</u> is useful for comparing a query to a set of document embeddings.

```
from langchain.vectorstores import Chroma

db = Chroma.from_texts(embedded_texts)
similar_texts = db.similarity_search("search query")
```

☐ Vector Stores

After embedding texts, we can store them in a vector store like <u>Chroma</u> and perform similarity searches

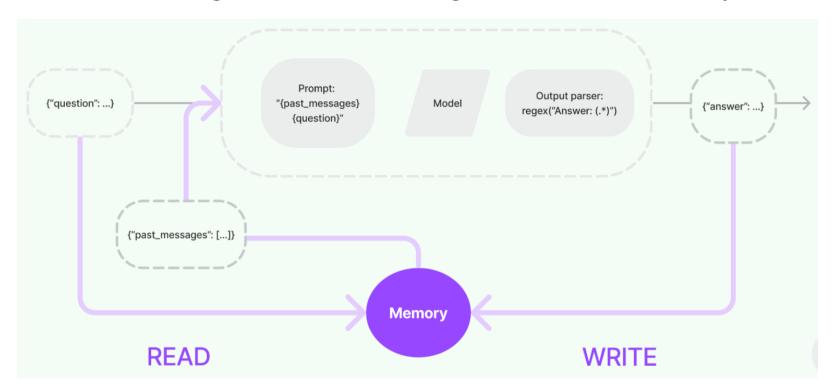
☐ Indexing

use the <u>FAISS</u> vector store to create indexes for our documents.

```
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.vectorstores import FAISS
bm25 retriever = BM25Retriever.from texts(doc list).set k(2)
faiss vectorstore = FAISS.from texts(doc list, OpenAIEmbeddings())
faiss retriever = faiss vectorstore.as retriever(search kwargs={"k": 2})
ensemble retriever = EnsembleRetriever(
    retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
docs = ensemble retriever.get relevant documents("apples")
print(docs[0].page content)
```

☐ Retrievers The EnsembleRetriever combines different retrieval algorithms to achieve better performance. An example of combining BM25 and FAISS Retrievers is shown in the above

Building Blocks of LangChain — Memory



☐ Refer to information introduced earlier in the conversation.

Building Blocks of LangChain — Memory

```
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
11m = OpenAI(temperature=0)
template = "Your conversation template here..."
prompt = PromptTemplate.from template(template)
memory = ConversationBufferMemory(memory key="chat history")
conversation = LLMChain(llm=llm, prompt=prompt, memory=memory)
response = conversation({"question": "What's the weather like?"})
```

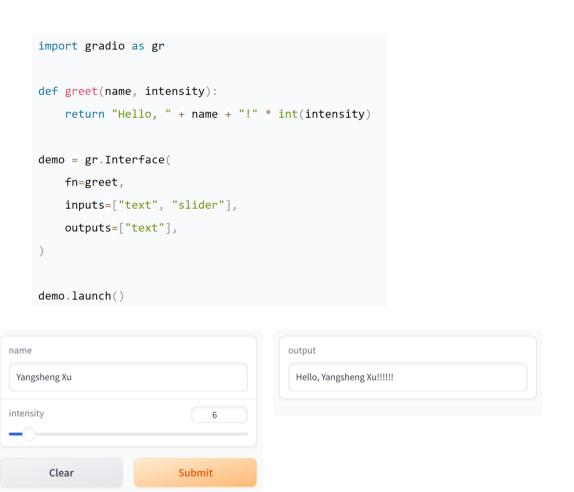
□ LangChain's memory system integrates with its chains to provide a coherent and contextually aware conversational experience.

Application (ALL in ONE) —VectorStoreRetrieverMemory

VectorStoreRetrieverMemor
 □ stores memories in a vector store
 □ queries the top-K most "salient" documents every time it is called.

UI (Gradio)

```
import gradio as gr
def greet(name, intensity):
    return "Hello, " + name + "!" * int(intensity)
demo = gr.Interface(
    fn=greet,
    inputs=["text", "slider"],
    outputs=["text"],
demo.launch()
```



https://www.gradio.app/guides/quickstart

Discussion